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ABSTRACT 
In this paper the problem of how to design the most energy 

efficient  thermostatting system for a building is considered. 
Here the given subset of rooms in a building must have given 
temperatures. It is proven, that if heat is supplied directly into 
the building then it is optimal to supply it only to the rooms 
with given  temperatures. If air-conditioning   is used for 
heating then it is more efficient to supply /remove  heat to/from 
the target rooms and also to/from intermediate rooms with non-
fixed temperatures. 

 
INTRODUCTION 
It is sometimes necessary to establish fixed temperatures in 
some rooms of a building only (we shall call them target 
rooms). The temperatures in other (intermediate) rooms are 
allowed to set freely.  given temperatures of the target rooms as 
well as these temperatures themselves may vary, depending on 
the season and on the time of the day.  In this paper we consider 
the problem of minimal energy consumption for 
heating/cooling of such a building. We will show that if the 
building is heated by direct heat supply, then for any law of 
heat transfer (that is, for convection heating and radiant 
heating) the heating shall be done by transferring heat only to 
thermal stated rooms. But if air-conditioning is used then the 
most efficient way is to supply/remove some of the energy into 
intermediate rooms also.  
Similar problem also arises in cryogenic, where the objective is 
to establish a pre-set low temperature in a chamber using heat 
pumps. It is known, that for some laws of heat transfer, it is 
more efficient in this problem to use so-called active insulation. 
It includes an “onion ring” of chambers embedding each other, 
where some part of heat is removed from the central thermal 
stated chamber and some parts from each intermediate 
chamber. The temperatures in intermediate chambers are set 
lower than the temperature of the environment but higher than 
the temperature of the thermal stated chamber. The active 
insulation problem was first considered in [1], and then 
generalized in [2]. In [2] it was shown for which laws of heat 
transfer active insulation leads to energy savings.  
In this paper we consider the problem of optimal thermal 
stating for a general structure building which includes a number 

of interconnected rooms. We consider two versions of this 
problem: 
(A) The problem of optimal heating of this building (heat 

supply via electric, gas, water or air heating). 
(B) The problem of optimal air-conditioning of this building 

(heating or cooling using the cycle of refrigerator or heat 
pump). 

 
Figure 1. General structure of a building. 

The structure of this building is shown in Figure 1, where the 
following notations are used: 
Ti – is the temperature of the i-th room (i=0,1,…,n) [ 0 ]; C

),( jiij TTα -is the heat transfer coefficient between i-th and j-
th room, which can depend on the temperatures in these rooms  
( 0≥= ijji αα ), [ ]; 

- is the heat flux from the i-th 

room to the j-th room, [ ]; 
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))(,( 0000 iiii TTTTq −=α - is the heat flux from the i-th 

room to the environment with the temperature T0, [ ]; Bt
~

iq  is the heat flux, supplied (removed) to/from i-th room, 

[ ]. We assume that the sign of this flux is positive if the 
heat is supplied to the i-th room. 
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Problem formulation: Assume that the temperatures of m 
rooms T1,…Tm ( and the temperature of the 
environment T

)nm <
0  are fixed. It is required to find such heat fluxes 

iq~  (i=1,…,n) that the total amount of heat supplied (for the 
problem A) or the combined power used to drive heat pumps 
and refrigerators (for the problem B) is minimal.  

 

MINIMIZATION OF ENERGY CONSUMPTION FOR 
DIRECT HEATING 
Let us write down the formally the problem of minimization of 
total heat supplied. This problem arises when heating system is 
designed for a building where the set of rooms where the 
temperatures are required to be fixed as well as the temperature 
of the environment T0 changes during different seasons and/or 
during different time of the day.  
The optimality criterion here is  

min~
1

→=∑
=

n

i
iA qI      (1) 

 
subject to the heat  balance  
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constraints on the heat fluxes  
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and constraints imposed on the temperatures of the thermal 
stated rooms  
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This problem can be simplified,  by eliminating the condition 
(2) and rewriting the objective function as 
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subject to constraints   
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The unknown variables in this problem are the temperatures of 
the intermediate room Ti (i=m+1,…,n). 
Let us write down the Lagrange function of the problem (5), (6)   
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Its optimality conditions follow from the Kuhn - Tucker 
theorem 
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Here iTδ  is a feasible variation of the temperature Ti. 

The Slater's conditions (9) require that 0=iλ , 
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for all j, from the conditions 

(8), (9) it follows that the heat shall be supplied only to the 
thermal stated rooms only (where the temperatures are given) 
and shall not be supplied to the intermediate rooms. The 
optimal values of heat fluxes ~  ( ) is uniquely 
determined by the heat balance equations (2) which take the 
following form 
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The conditions (10)-(12) allow us to find the fluxes iq~  

( ) and (n-m) temperatures in intermediate rooms.  mi ,,1K=
For the Newton (linear) law of heat transfer, the heat transfer 
coefficients ijα are constant and the problem (4)-(6) becomes 
the linear programming problem, and the conditions (10)-(11) 
turn out to be the set of (n-m) linear equations. The solution of 
this set of equations completely determines the optimal values 
of fluxes  iq~ . If one of the fluxes q i

~  turns out to be negative 
then no optimal solution exists for the heating problem (A) and 
it is necessary to utilize air-conditioning for heating.  

MINIMIZATION OF ENERGY CONSUMPTION FOR 
HEAT PUMP/AIR CONDITIONING BASED 
HEATING/COOLING 
The problem of minimization of the combined energy used by 
air-conditioning system takes the following form  
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subject to conditions (2), (4). We denote the efficiencies of heat 

pumps as 
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the pump (the heat transfer coefficients in the heater and 

   



refrigerator and ), the form of the cycle, the temperatures 

on the hot and cot side of the cycle T and T  and on the power 

used . The reversible estimate of the heat efficiency of the 

heat engine does not depend on  
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Here and later we measure temperatures in Kelvins.  
The more accurate lower estimate for the efficiency of a heat 
pump and refrigerator cycle, which takes into account the 
irreversibility of heat transfer was obtained in [3], [4]. For the 
Newton law of heat transfer with the heat transfer coefficient 

for the heat removal from the environment and for the 
heat supply into the room this estimate has the following form 
[3]  
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here is the equivalent heat transfer 

coefficient. 
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Let us rewrite the condition (2) in the following form  
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In the problem (13), (16), (4) the unknown variables are powers 
 ( ) and the temperatures of the intermediate 

rooms T ( ). 
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If ∑ then the air-conditioner for the i-th room 

operates as a heat pump and its  has the form (15). If 

 then it operates as a refrigerator, with T . In 

this case the reversible efficiency is  
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For an irreversible cycle the efficiencies  in the conditions 
(16) and all equations which follow from them should be 
replaced with  

r

)1),,( 0 −= iii PTTr( .     (17) 
Note that the temperatures T and T in equation (17) changed 
places. The equality (17) follows from the known relation 
between the efficiency of refrigerating cycle and the efficiency 
of heat pump [5]. 
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The Lagrange function of the problem (13), (14), (4)  has the 
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,1),,(0 0
ii

i
iiii

i P
r

PPTTr
P
L

λ
−=

∂
∂

+→=
∂
∂

 . 

        (18) 

ni ,,1K=

,00
,10

=
∂
∂

+
∂
∂

+
∂
∂

→=
∂
∂ ∑∑

≠
==

n

i
i

i
n

j

j

T
q

T
q

T
r

P
T
L

ν
ν

ν

ν

ν

ν

ν
ν

ν

nm ,,1K+=

 

 ν      (19) 
These conditions jointly with the conditions (16) and 
expressions (15),(17)  determine the unknown variables. 
If a reversible efficiency estimate is used then the problem is 
simplified and the system (16), (18), (19) leads to the following 
equations  
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Thus the temperatures of the intermediate rooms are  
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This system of equations allows us to find all the 
temperatures, because all the temperatures for 

are fixed (see (12)). After finding the 
temperatures the powers can be found from the 
conditions (20) for all   . 

mi ≤
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Example 
Consider the building shown in Figure 2. The temperatures 
areT and T and the heat transfer 

coefficients are 

K2530 = K2931 =

K
BtK 30000 =KK 21 == and 

K
Bt08.α 942010 == α and 

K
Bt1802112 == αα

2

. It is 

required to find the temperature T  in the second room and the 
powers of  heat engines. 

   



 
Figure 2. The plan and the computational structure of the building used 
in Example.  
The problem of minimal energy used to drive heat pumps has 
the following form here  
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Thus, the optimality criterion I depends only on T only and 

attends its minimum at T .   
2

K2822 =
Substitution of the obtained temperature T into the expressions 

for the powers yields and .. 
2
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CONCLUSION 
In this paper we demonstrated that for any law of heat transfer 
if the building is heated by direct supply of heat (electrical 
heating, heating using hot water/air, natural gas heating) then it 
is most energy efficient to supply heat only into the set of 
rooms where the temperatures are fixed. The temperatures in 
the intermediate rooms are allowed to set up freely and are 
determined by the conditions of heat transfer. 
If air-conditions are used for heating/cooling then it is most 
efficient to utilize some power to establish some optimal 
temperatures in the intermediate non-target set of rooms.  
The obtained formulas allow us to estimate the lower bound on 
the total energy consumption for thermal stating of the 
building. 
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