DIFFERENTIAL IVARIANTS. SIMPLEST EXAMPLES. II.

VALERIY YUMAGUZHIN

1. INTRODUCTION

In this lecture, we show that a 3-web exists on every solution of a PDE
system describing the 1-dimensional gas dynamics. We construct the first
nontrivial differential invariant of 3-webs. This invariant is an obstruction
for a 3-web to be locally flat. Finally, we calculate explicit solutions of the
PDE system possessing locally flat 3-webs.

Below, all manifolds and maps are supposed to be smooth. By | f]'; , k=
0,1,2,..., we denote the k-jet of a map f at a point p, by R we denote the
field of real numbers, and by R"™ we denote the n-dimensional arithmetic
space.

2. EQUATIONS OF THE 1-DIMENSIONAL GAS DYNAMICS

2.1.  Consider the PDE system describing the 1-dimensional gas dynamics

1
ut—l—uuz—i—;px:O

Pt upy + pug =0 (2.1)

Pt +upz + A(p,p)uy =0,

where u is a velocity, p is a density, p is a pressure, and A(p,p)
= —p(0s/0p)/(0s/0p), where s(p,p) is an entropy. We will consider this
system as a submanifold in the corresponding jet bundle. To this end con-
sider the following trivial bundle
T REX R = R?, w:(at2%ul ) — (2l 2?).
Let m ka - R?, k = 0,1, be the bundle of all k-jets of sections of 7. By
27, ul, ul, ub we denote the standard coordinates on J'z. Obviously, we
can consider system (2.1) as a submanifold of J'7 defined by the system of
equations
1
1 1,1 3
=0
up +uuy + 2 Uy
ui 4+ u'ul + vuy =0 (2.2)
uf +utuy 4+ A(u® uP)uy =0,
We denote this submanifold by €.
Any section S of m generates the section 715 : p — [S]Zl, of J'r. By

definition, put L}S, = Im j;.5. We identify a solution
S : (zt,2?) — (u1 = St(z!, 2?),u? = S%(a!, 2?),u = 5’3(561,962)) (2.3)

of system (2.2) with the 2-dimensional submanifold L} C €.

Below, by M we denote the base of 7.
1
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2.2. Characteristic covectors. Recall the coordinate definition of a char-
acteristic covector. Let 6; € € and p = 71(61). A nonzero 1-form ajdr! +
adx?® € T;M is called a characteristic covector for 01 if

det ( (OF/oud) - an + (OF [0l - s ))91 —0,

where the functions F', F2, and F? are the left hand side of first, second,
and third equation of system (2.2) respectively. Explicitly, the last equation
is the following

a1 + utao 0 s /u?
det ulay aq + ulas 0 =0
AO[Q 0 o1 + ulag 01

That is
(1 +ulag)® — (g +ulag)Aas/u? =0
Obviously, this equation is equivalent to the following two equations
o +utan =0, a4+ (u!' £ VA/u2)as =0

Note that if w is a characteristic covector, then A w is a characteristic covector
too for any A # 0. Taking into account this remark, we obtain that for 6
there are three characteristic covectors up to scalar factors:

w! = —uldzt + da?,
w? = (—u! + /A u2)dx! + da?,
W = (—u! — \/A/u?)dz! + da?
Obviously, any two of them are linearly independent.
2.3. 3-webs of solutions. Let L}g be an arbitrary solution of €. In stan-

dard coordinates it is defined by parametric equations

0% z', 2%)).

7S (2, 2%) — (u' = Si(ml,xQ),ué- = c%zj(

2 and w?, we obtain three differential 1-forms

Substituting S* for v’ in w!, w
wé = —Stdat + da?,
2= (=S'+\/A/S?)dz! + da?, (2.4)
wg = (=S' — \/A/S?)dz' + da?
on solution S considering as the 2-dimensional manifold LIS. Clear, any two

of these differential 1-forms are linearly independent at every point of LY.
Let F;, i =1,2,3, be the family of curves on Lé so that

VyeF wg,y:o.

It is easy to check that the following properties hold for these families:
(1) for every i and every point p € L}g there exist a unique ~; € F;
passing trough p.
(2) for i # j, any two curves v; € F; and 7; € F; intersect transversally.
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The first property follows immediately from the theory of ordinary differen-
tial equations. Second one follows immediately from the linear independence
of any two of the forms w!, w?, and w3 at every point p € L.

Definition 2.1. A collection of three families of curves W = {Fy, F5, F3} on
a 2-dimensional manifold is called a 3-web if these families satisfy conditions

(1) and (2).

Thus, 1-forms (2.4) define the 3-web on the solution L} of &. By Wg we
denote this 3-web.

3. DIFFERENTIAL INVARIANTS OF 3-WEBS

Let L be a smooth 2-dimensional manifold, W = {F}, Fy, F3} a 3-web on
L, and f: L — L a diffecomorphism. Then f transforms any curve v; € F;,
i = 1,2,3, to the curve f(v;). Obviously, these transformed curves define
the new 3-web. This 3-web is called a transformed 3-web and it is denoted
by f(W).

A function or a differential form Qy generated by W by some rule is
called a differential invariant of W if for any diffeomorphism f the following
condition is satisfied

Qw = [ (Qrwy) 5
where Qyy is generated by f(W) by the same rule.

Let W’ be another 3-web on L. The 3-webs W and W' are called locally
equivalent if there exist a local diffeomorphism

Lo>u - uvctL
such that f(W/|y) = W|y.. The problem to find necessary and sufficient
conditions of existence of a local diffeomorphism transforming one 3-web
to another one is called the equivalence problem. A complete collection of
differential invariants make possible to solve this problem.

Now we construct the first nontrivial differential invariant of 3-webs.

It is clear that a collection of differential 1-forms generating a 3-web is
not uniquely defined. In fact, if the collection of 1-forms o', o2, and o3
defines W, then for everywhere nonzero functions fi1, fa, f3, the collection
of 1-forms fia!, foa?, fza® defines W too. It follows that we can choose
forms o', o2, and o? defining W so that

ol +a?+a’=0. (3.1)
These 1-forms are defined uniquely up to a common everywhere nonzero
factor. Let

O=a' N2,
From (3.1), we have a' Aa? = a? A a3 = a® Aal. From dim L = 2, it follows
that '
do' = \0, i=1,2,3.

Let

o = /\1042 — )\gal .
Then from (3.1), we obtain A\ja? — Xaa! = Aaa® — A\302 = A3a! — \jo®. By
definition, put

QW =do.
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It is easy to prove the following statement.

Proposition 3.1. The 2-form Qy is independent of the choice of o, o2,
and o3 satisfying (3.1).

The 2-form « is called the curvature form of W. It is a differential
invariant of W.

A 3-web on L is called locally flat if for any p € L there exist a local chart
in a neighborhood of p such that curves of W expressed in terms of this
chart are straight lines.

Theorem 3.2. A 3-web W is locally flat iff Qw = 0.

4. EXPLICIT SOLUTIONS POSSESSING LOCALLY FLAT 3-WEBS

4.1. Following the previous section, let us calculate the curvature of the
3-web Wy defined on the solution L} of system (2.1). This web is defined
by 1-forms (2.4)

wh = —udt +dz, wi=(—u++\/A/p)dt+dx, wi=(—u—/A/p)dt+ dx

Putting o' = —2w}9, a? = w%, and o = wg, we obtain a! +a? + a3 =0,
O =a'ANa®=2/A/p-dt Ndx
da' =00 =——2_@,
Alp

2_ o U= VAP
da® = 1O = NI 0,
o =Xa® — o' = (u(ln|v/A/pl)s — uy )dt — (In|\/A/p|)s dx

and finally

Qwg = do %(A/P Uze — A/ P(V A/ p)ztia
+((A/p)e = VATP(ATp)a )t = (VAT P+ (VAT )i (v A p) ) dt Al

(4.1)

4.2.  From theorem 3.2 and equation (4.1), it follows that the 3-web Wg is
locally flat iff the solution S satisfies additionally the equation

(A/p)uze — A/ p(V A/ p)aus + (( A/p Alp( A/:O)xx)
— (VA + (VA/p)i(VA/p)a
For a simplicity, consider a special case of system (2.1):
Alp,p) =p.
Then equation (4.2) is

Ugr = 0.
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Let us find explicit solutions of this special system possessing locally flat
3-webs. To this end, we should solve the system

ug + uty + pzp/p =0 (4.3)
pt + upy + puy =0 (4.4)
Pt + upy + pug =0 (4.5)
Ugy = 0. (4.6)
From (4.6), we have
u=ci(t)x + ca(t). (4.7)

Substitute (4.7) in (4.4). Solving obtained equation, we get a general solu-

tion
p=cJ Cl«p(:ﬁe—f 1 — /626_-1‘ ),
where ¢ is an arbitrary smooth function. Putting ¢ = 1, we obtain a special
solution
p=eJo. (4.8)
Substitute (4.7) and (4.8) into (4.5). Solving obtained equation, we get a
general solution

p:/cle_fcl +1/)(336_f61 /02€_fcl),

where 1) is an arbitrary smooth function. Putting ¥ = id, we obtain a
special solution

p=axze /efcl(cl +c2). (4.9)
Finally, substituting (4.7), (4.8), and (4.9) into (4.3), we obtain
1 1 Ky
- - —(t+ K
A= irE 2T RUTR e

where K7, Ko € R. Substituting these expressions for ¢; and ¢y into (4.7),
(4.8), and (4.9), we obtain the following solutions of system (2.1) possessing
the locally flat 3-webs:

_$+K2 t+ K3

u_t—i—Kl_ 2

P= T+ Ky

p= [t K (Ka— ) (Kl + K] K,
It + K1 it + K1/ 2

here K1,..., K5 € R.

5. EXERCISES

(1) Let W = {F}, F3, F3} be 3-web on a smooth manifold L. Prove
that for any p € L there exist a local chart in a neighborhood of p
such that F' and F? coincide respectively with the family of first
coordinate lines and the family of second coordinate lines of this
chart.

(2) Prove proposition 3.1.
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(3) Prove that the curvature of a 3-web is a differential invariant.

(4) Express the curvature of a 3-web in terms of the chart described in
exercise 1.

(5) Prove that locally flat 3-webs are locally equivalent.

(6) Prove theorem 3.2.

(7) Let & be a vector field on L and f; its flow. Then £ is called a
symmetry of 3-web W, if fy(W) =W for every t.
(a) Prove that the set of all symmetries of W is a Lie algebra.
(b) Calculate the symmetry algebra for an arbitrary 3-web.

(8) Let A(p,p) = p in system (2.1). Find solutions of this system pos-
sessing locally flat 3-webs.
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