
DIFFERENTIAL IVARIANTS. SIMPLEST EXAMPLES. II.

VALERIY YUMAGUZHIN

1. Introduction

In this lecture, we show that a 3-web exists on every solution of a PDE
system describing the 1-dimensional gas dynamics. We construct the first
nontrivial differential invariant of 3-webs. This invariant is an obstruction
for a 3-web to be locally flat. Finally, we calculate explicit solutions of the
PDE system possessing locally flat 3-webs.

Below, all manifolds and maps are supposed to be smooth. By [f ]kp , k =
0, 1, 2, . . . , we denote the k-jet of a map f at a point p, by R we denote the
field of real numbers, and by Rn we denote the n-dimensional arithmetic
space.

2. Equations of the 1-dimensional gas dynamics

2.1. Consider the PDE system describing the 1-dimensional gas dynamics
ut + uux +

1
ρ
px = 0

ρt + uρx + ρux = 0

pt + upx +A(ρ, p)ux = 0 ,

(2.1)

where u is a velocity, ρ is a density, p is a pressure, and A(ρ, p)
= −ρ(∂s/∂ρ)/(∂s/∂p), where s(ρ, p) is an entropy. We will consider this
system as a submanifold in the corresponding jet bundle. To this end con-
sider the following trivial bundle

π : R2×R3 → R2 , π : (x1, x2;u1, u2, u3) 7→ (x1, x2) .

Let πk : Jkπ → R2, k = 0, 1, be the bundle of all k-jets of sections of π. By
xj , ui, ui

1, u
i
2 we denote the standard coordinates on J1π. Obviously, we

can consider system (2.1) as a submanifold of J1π defined by the system of
equations 

u1
1 + u1u1

2 +
1
u2
u3

2 = 0

u2
1 + u1u2

2 + u2u1
2 = 0

u3
1 + u1u3

2 +A(u2, u3)u1
2 = 0 ,

(2.2)

We denote this submanifold by E.
Any section S of π generates the section j1S : p 7→ [S]1p of J1π. By

definition, put L1
S = Im j1S. We identify a solution

S : (x1, x2) 7→
(
u1 = S1(x1, x2), u2 = S2(x1, x2), u3 = S3(x1, x2)

)
(2.3)

of system (2.2) with the 2-dimensional submanifold L1
S ⊂ E.

Below, by M we denote the base of π.
1
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2.2. Characteristic covectors. Recall the coordinate definition of a char-
acteristic covector. Let θ1 ∈ E and p = π1(θ1). A nonzero 1-form α1dx

1 +
α1dx

2 ∈ T ∗
pM is called a characteristic covector for θ1 if

det
(

(∂F i/∂uj
1) · α1 + (∂F i/∂uj

2) · α2

)∣∣∣
θ1

= 0 ,

where the functions F 1, F 2, and F 3 are the left hand side of first, second,
and third equation of system (2.2) respectively. Explicitly, the last equation
is the following

det

α1 + u1α2 0 α2/u
2

u2α2 α1 + u1α2 0
Aα2 0 α1 + u1α2

∣∣∣
θ1

= 0

That is
(α1 + u1α2)3 − (α1 + u1α2)Aα2

2/u
2 = 0

Obviously, this equation is equivalent to the following two equations

α1 + u1α2 = 0 , α1 + (u1 ±
√
A/u2)α2 = 0

Note that if ω is a characteristic covector, then λω is a characteristic covector
too for any λ 6= 0. Taking into account this remark, we obtain that for θ1
there are three characteristic covectors up to scalar factors:

ω1 = −u1dx1 + dx2,

ω2 = (−u1 +
√
A/u2)dx1 + dx2,

ω3 = (−u1 −
√
A/u2)dx1 + dx2

Obviously, any two of them are linearly independent.

2.3. 3-webs of solutions. Let L1
S be an arbitrary solution of E. In stan-

dard coordinates it is defined by parametric equations

j1S : (x1, x2) 7→
(
ui = Si(x1, x2), ui

j =
∂Si

∂xj
(x1, x2)

)
.

Substituting Si for ui in ω1, ω2, and ω3, we obtain three differential 1-forms

ω1
S = −S1dx1 + dx2,

ω2
S = (−S1 +

√
A/S2)dx1 + dx2,

ω3
S = (−S1 −

√
A/S2)dx1 + dx2

(2.4)

on solution S considering as the 2-dimensional manifold L1
S . Clear, any two

of these differential 1-forms are linearly independent at every point of L1
S .

Let Fi, i = 1, 2, 3, be the family of curves on L1
S so that

∀ γ ∈ Fi ωi
S

∣∣
γ

= 0 .

It is easy to check that the following properties hold for these families:
(1) for every i and every point p ∈ L1

S there exist a unique γi ∈ Fi

passing trough p.
(2) for i 6= j, any two curves γi ∈ Fi and γj ∈ Fj intersect transversally.
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The first property follows immediately from the theory of ordinary differen-
tial equations. Second one follows immediately from the linear independence
of any two of the forms ω1, ω2, and ω3 at every point p ∈ L1

S .

Definition 2.1. A collection of three families of curves W = {F1, F2, F3} on
a 2-dimensional manifold is called a 3-web if these families satisfy conditions
(1) and (2).

Thus, 1-forms (2.4) define the 3-web on the solution L1
S of E. By WS we

denote this 3-web.

3. Differential invariants of 3-webs

Let L be a smooth 2-dimensional manifold, W = {F1, F2, F3} a 3-web on
L, and f : L → L a diffeomorphism. Then f transforms any curve γi ∈ Fi,
i = 1, 2, 3, to the curve f(γi). Obviously, these transformed curves define
the new 3-web. This 3-web is called a transformed 3-web and it is denoted
by f(W ).

A function or a differential form ΩW generated by W by some rule is
called a differential invariant of W if for any diffeomorphism f the following
condition is satisfied

ΩW = f∗(Ωf(W )) ,
where Ωf(W ) is generated by f(W ) by the same rule.

Let W ′ be another 3-web on L. The 3-webs W and W ′ are called locally
equivalent if there exist a local diffeomorphism

L ⊃ U
f−−−−→ U ′ ⊂ L

such that f(W |U ) = W ′|U ′ . The problem to find necessary and sufficient
conditions of existence of a local diffeomorphism transforming one 3-web
to another one is called the equivalence problem. A complete collection of
differential invariants make possible to solve this problem.

Now we construct the first nontrivial differential invariant of 3-webs.
It is clear that a collection of differential 1-forms generating a 3-web is

not uniquely defined. In fact, if the collection of 1-forms α1, α2, and α3

defines W , then for everywhere nonzero functions f1, f2, f3, the collection
of 1-forms f1α

1, f2α
2, f3α

3 defines W too. It follows that we can choose
forms α1, α2, and α3 defining W so that

α1 + α2 + α3 = 0 . (3.1)

These 1-forms are defined uniquely up to a common everywhere nonzero
factor. Let

Θ = α1 ∧ α2 .

From (3.1), we have α1∧α2 = α2∧α3 = α3∧α1. From dimL = 2, it follows
that

dαi = λiΘ, i = 1, 2, 3 .
Let

σ = λ1α
2 − λ2α

1 .

Then from (3.1), we obtain λ1α
2 − λ2α

1 = λ2α
3 − λ3α

2 = λ3α
1 − λ1α

3. By
definition, put

ΩW = dσ .
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It is easy to prove the following statement.

Proposition 3.1. The 2–form ΩW is independent of the choice of α1, α2,
and α3 satisfying (3.1).

The 2–form α is called the curvature form of W . It is a differential
invariant of W .

A 3-web on L is called locally flat if for any p ∈ L there exist a local chart
in a neighborhood of p such that curves of W expressed in terms of this
chart are straight lines.

Theorem 3.2. A 3-web W is locally flat iff ΩW = 0.

4. Explicit solutions possessing locally flat 3-webs

4.1. Following the previous section, let us calculate the curvature of the
3-web WS defined on the solution L1

S of system (2.1). This web is defined
by 1-forms (2.4)

ω1
S = −udt+ dx, ω2

S = (−u+
√
A/ρ)dt+ dx, ω3

S = (−u−
√
A/ρ)dt+ dx

Putting α1 = −2ω1
S , α2 = ω2

S , and α3 = ω3
S , we obtain α1 + α2 + α3 = 0,

Θ = α1 ∧ α2 = 2
√
A/ρ · dt ∧ dx

dα1 = λ1Θ = − ux√
A/ρ

Θ ,

dα2 = λ2Θ =
(u−

√
A/ρ)x

2
√
A/ρ

Θ ,

σ = λ1α
2 − λ2α

1 =
(
u(ln |

√
A/ρ|)x − ux

)
dt− (ln |

√
A/ρ|)x dx ,

and finally

ΩWS
= dσ =

ρ

A

(
(A/ρ)uxx −

√
A/ρ(

√
A/ρ)xux

+
(
(A/ρ)x−

√
A/ρ(

√
A/ρ)xx

)
u− (

√
A/ρ)tx +(

√
A/ρ)t(

√
A/ρ)x

)
dt∧dx .

(4.1)

4.2. From theorem 3.2 and equation (4.1), it follows that the 3-web WS is
locally flat iff the solution S satisfies additionally the equation

(A/ρ)uxx −
√
A/ρ(

√
A/ρ)xux +

(
(A/ρ)x −

√
A/ρ(

√
A/ρ)xx

)
u

− (
√
A/ρ)tx + (

√
A/ρ)t(

√
A/ρ)x = 0 (4.2)

For a simplicity, consider a special case of system (2.1):

A(ρ, p) = ρ .

Then equation (4.2) is
uxx = 0 .
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Let us find explicit solutions of this special system possessing locally flat
3-webs. To this end, we should solve the system

ut + uux + ρx/ρ = 0 (4.3)

ρt + uρx + ρux = 0 (4.4)

pt + upx + ρux = 0 (4.5)

uxx = 0 . (4.6)

From (4.6), we have
u = c1(t)x+ c2(t) . (4.7)

Substitute (4.7) in (4.4). Solving obtained equation, we get a general solu-
tion

ρ = e−
∫

c1ϕ
(
xe−

∫
c1 −

∫
c2e

−
∫

c1
)
,

where ϕ is an arbitrary smooth function. Putting ϕ ≡ 1, we obtain a special
solution

ρ = e−
∫

c1 . (4.8)
Substitute (4.7) and (4.8) into (4.5). Solving obtained equation, we get a
general solution

p = −
∫
c1e

−
∫

c1 + ψ
(
xe−

∫
c1 −

∫
c2e

−
∫

c1
)
,

where ψ is an arbitrary smooth function. Putting ψ ≡ id, we obtain a
special solution

p = xe−
∫

c1 −
∫
e−

∫
c1(c1 + c2) . (4.9)

Finally, substituting (4.7), (4.8), and (4.9) into (4.3), we obtain

c1 =
1

t+K1
, c2 = −1

2
(t+K1) +

K2

t+K1
,

where K1,K2 ∈ R. Substituting these expressions for c1 and c2 into (4.7),
(4.8), and (4.9), we obtain the following solutions of system (2.1) possessing
the locally flat 3-webs:

u =
x+K2

t+K1
− t+K1

2

ρ =
K3

|t+K1|

p =
[ x

|t+K1|
− (1 +K2)

(
K4 −

1
|t+K1|

)
+

1
2
(|t+K1|+K5)

]
K3 ,

here K1, . . . ,K5 ∈ R.

5. Exercises

(1) Let W = {F1, F2, F3} be 3-web on a smooth manifold L. Prove
that for any p ∈ L there exist a local chart in a neighborhood of p
such that F 1 and F 2 coincide respectively with the family of first
coordinate lines and the family of second coordinate lines of this
chart.

(2) Prove proposition 3.1.
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(3) Prove that the curvature of a 3-web is a differential invariant.
(4) Express the curvature of a 3-web in terms of the chart described in

exercise 1.
(5) Prove that locally flat 3-webs are locally equivalent.
(6) Prove theorem 3.2.
(7) Let ξ be a vector field on L and ft its flow. Then ξ is called a

symmetry of 3-web W , if ft(W ) = W for every t.
(a) Prove that the set of all symmetries of W is a Lie algebra.
(b) Calculate the symmetry algebra for an arbitrary 3-web.

(8) Let A(ρ, p) = ρ in system (2.1). Find solutions of this system pos-
sessing locally flat 3-webs.
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